Recollision processes and other photon-induced strong-field QED phenomena in a plane-wave laser field

ExHILP 2017 @ Técnico Lisboa

September 7th, 2017

Sebastian Meuren

Sergey Bragin, Matteo Tamburini, Antonino Di Piazza, Christoph H. Keitel
Nathaniel J. Fisch

MPI for Nuclear Physics, Heidelberg (Germany)

Department of Astrophysical Sciences, Princeton University (New Jersey, USA)
Asymmetric Light-by-Light Scattering

Strong optical laser \((I \gtrsim 10^{22} \text{ W/cm}^2, \omega \sim \text{eV})\)
Highly energetic gamma photons \((\omega_\gamma \gtrsim \text{GeV})\)

Why are we interested in this setup?

- Clean experiment, only on-shell photons in the initial state
- Conceptual very appealing:
 - energy-matter equivalence
 - wave-particle duality
- Pure quantum effects, photon-photon interaction is forbidden in CED
- Nontrivial phenomena are strongly suppressed below the critical field
- The “intensity frontier” is complementary to the “energy frontier”

Disclaimer: not all relevant papers are cited; natural units \((\hbar = c = \varepsilon_0 = 1)\) are used
Light-Light interaction in the “classical” limit

- Classical electrodynamics (CED): superposition principle, no LBLS
- Quantum field theory: photons couple via virtual electric charges
- Leading-order corrections: effective Euler-Heisenberg Lagrangian
 - Valid for slowly varying fields (small photon momenta)
 - Relevant scale is the electron Compton wavelength $\lambda_C = 1/m$

Euler-Heisenberg Lagrangian density (1936)

$$\mathcal{L} = \frac{1}{2} (E^2 - B^2) + \frac{2\alpha}{45 E_{cr}^2} \left[(E^2 - B^2)^2 + 7 (EB)^2 \right] + \ldots$$

Leading-order contribution to the EH-Lagrangian

- EH corrections are suppressed below the critical field $E_{cr} = m^2/|e|$
- In vacuum $I_{cr} = 4.6 \times 10^{29} \text{ W/cm}^2$ is not achievable in the near future

\rightarrow Euler-Heisenberg is very challenging to measure!
Slowly varying fields vs. high-energy probe photons

Vacuum field invariants

\[\mathcal{F} = \frac{1}{4} F_{\mu\nu} F^{\mu\nu}, \quad \mathcal{G} = \frac{1}{4} \tilde{F}_{\mu\nu} F^{\mu\nu} \]

Only two if gradients are negligible

Quantum nonlinearity parameter

\[\chi \sim \frac{|e|}{m^3} \sqrt{q^\mu F_{\mu\nu}^2 q^\nu} \sim 2 \frac{\omega_\gamma}{m} \frac{E}{E_{cr}}, \]

\[\chi \approx 0.5741 \left(\frac{\omega_\gamma}{\text{GeV}} \right) \sqrt{I/(10^{22} \text{ W/cm}^2)} \]

Constructed using the four-momentum \(q^\mu \)

Lorentz boost enhances electric field

Euler-Heisenberg Lagrangian

Valid for approximately constant fields

Polarization operator

Probe-photon momentum included
Slowly varying fields vs. high-energy probe photons

Vacuum field invariants

\[\mathcal{F} = \frac{1}{4} F_{\mu \nu} F^{\mu \nu}, \quad G = \frac{1}{4} \tilde{F}_{\mu \nu} F^{\mu \nu} \]

Only two if gradients are negligible

Quantum nonlinearity parameter

\[\chi \sim |e| m^3 \sqrt{q_{\mu} F_{\mu \nu} q_{\nu}} \sim 2 \omega \gamma m E / E_{cr}, \]

\[\chi \approx 0.5741 \left(\frac{\omega \gamma}{\text{GeV}} \right) \sqrt{I/\left(10^{22} \text{W/cm}^2\right)} \]

Experimental perspectives

Highly-energetic gammas via Compton backscattering

- Electron energy: 1 – 10 GeV
- BIG photon source: 5 GeV

Intense optical laser facilities

- 1 PW focused to 10 (\mu m)^2 corresponds to 10^{22} W/cm^2
- 10 PW focused to 10 (\mu m)^2 corresponds to 10^{23} W/cm^2

\[\chi_\gamma \approx 0.9 \omega_\gamma [5 \text{ GeV}] \sqrt{I[10^{21} \text{ W/cm}^2]} \]
The exact photon wave function obeys a Dyson equation
\[-\partial^2 \Phi_{q}^{\text{in} \mu}(x) = \int d^4 y \, P^{\mu \nu}(x, y) \Phi_{q}^{\text{in} \nu}(y),\]
which is normally expanded into a nested double series

Number of insertions (propagation length in the field)
\[\ldots = \ldots + \ldots + \ldots + \ldots + \ldots\]

Relevant expansion parameter: \(\alpha \chi \xi N \, (\chi \ll 1)\)

Polarization operator expansion (radiative corrections)
\[\ldots = \ldots + \ldots + \ldots + \ldots + \ldots\]

Relevant expansion parameter: \(\alpha \chi^{2/3}\)

High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field

Sergey Bragin, Sebastian Meuren, Christof H. Keitel, and Antonino Di Piazza

Poster by Sergey Bragin (arXiv 1704.05234):

High-Energy Vacuum Birefringence and Dichroism in an Ultrastrong Laser Field

Sergey Bragin, Sebastian Meuren, Christof H. Keitel, and Antonino Di Piazza
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
(Dated: July 10, 2017)

- Above threshold VB becomes screened by vacuum dichroism
- Probing effects beyond EH, e.g., anomalous dispersion
- Circularly polarized gamma photons highly beneficial for VB
- Measuring VB at ELI Beamlines/ELI-NP within few hours/days
Breit-Wheeler pair production (BWPP)

Multiphoton regime

\[p_1^\mu \quad k_1^\mu \quad e^- \quad \gamma \leftarrow q^\mu \quad p_2^\mu \quad k_2^\mu \quad e^+ \]

\[\xi \ll 1: \text{process "feels" oscillations} \]

Tunneling regime

\[p_1^\mu \quad e^- \quad \gamma \leftarrow q^\mu \quad p_2^\mu \quad e^+ \]

\[\xi \gg 1: \text{process "feels" a static field} \]

Which is the time/length scale for pair production?

- Constant electric field \(E \): the pair becomes real after the length \(\delta x \):
 \[\delta x \left| e \right| E \sim mc^2 \quad \rightarrow \quad \delta x \sim \frac{mc^2}{\left| e \right| E}, \quad \delta \phi \sim \frac{\delta x \omega}{c} \sim \frac{\omega mc}{\left| e \right| E} = \frac{1}{\xi} \]

 \((\delta \phi \text{ is the formation region with respect to the laser phase } \phi = kx)\)

- The classical intensity parameter: \[\xi = a_0 = \left| e \right| E/(mc \omega) \]

Sauter-Schwinger effect

- Probability: \(\sim \exp \left(-\pi E_{cr}/E \right) \)

 (vacuum with electric field)

BWPP in the tunneling regime

- Probability: \(\sim \exp \left[-8/(3\chi) \right] \)

 (if \(\chi \ll 1 \) and \(\xi \gg 1 \))
Breit-Wheeler pair production (BWPP)

Breit-Wheeler is nonperturbative in the tunneling regime

Hand-waving derivation:

- Total field tensor $\tilde{F}_{\mu\nu} = F_{\mu\nu} + f_{\mu\nu}$
 - $F_{\mu\nu}$: constant crossed background field
 - $f_{\mu\nu} = (m/|e|)(\epsilon_{\mu} q^{\nu} - \epsilon_{\nu} q^{\mu})$: photon field tensor
 - q^{μ}: photon four-momentum
 - $\epsilon^{\mu} = (Fq)^{\mu}/\sqrt{qF^{2}q}$, ($\epsilon^{2} = -1$, $q_{\epsilon} = 0$): polarization four-vector

- Vacuum field invariant: $\mathcal{F} = \frac{1}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} = \frac{1}{2} (B^{2} - E^{2})$
 - $E \longrightarrow \sqrt{-2\mathcal{F}}$ in Schwinger formula
 - $\mathcal{F} \longrightarrow (m/|e|)(\epsilon^{\mu} F_{\mu\nu} q^{\nu}) = -E_{cr}^{2} \chi$ for our “field configuration”

- Schwinger pair production “assisted by a single photon”

Sauter-Schwinger effect

- Probability: $\sim \exp \left(-\pi E_{cr}/E \right)$
 (vacuum with electric field)

BWPP in the tunneling regime

- Probability: $\sim \exp \left[-8/(3\chi) \right]$
 (if $\chi \ll 1$ and $\xi \gg 1$)
The LCFA is usually assumed to be valid if $\xi \gg 1$
- Pair production: condition is modified if $\chi \gg 1$: $\xi \gg 1$, $\xi^3/\chi \gg 1$

V. N. Baier et al., *Electromagnetic Processes at High Energies in Oriented Single Crystals*
- However, the conditions $\xi \gg 1$ and $\alpha \chi^{2/3} \ll 1$ nearly imply $\xi^3/\chi \gg 1$

In numerical codes the LCFA is usually applied on the probability level
- Harmonic substructure is not obtained (Harvey et al., PRA 2015)
- It should be applied on the amplitude level (SM et al., PRD 2016)

For nonlinear Compton scattering (NLCS):

LCFA fails in the IR region of the spectrum (arXiv 1708.08276):

- Threshold: $\omega_\gamma \lesssim (\chi/\xi^3) \epsilon$ (ω_γ: photon energy, ϵ: electron energy)
- **There is no divergence in the probability for** $\omega_\gamma \to 0$!
- Can affect even $\omega_\gamma \sim 10$ MeV photons ($\epsilon = 10$ GeV, $\xi = 10$, $\omega = 1.55$ eV)

On the validity of the local constant field approximation in nonlinear Compton scattering

A. Di Piazza,1,* S. Meuren,1,2,† M. Tamburini,1,‡ and C. H. Keitel1,§

1Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
2Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
Laser photon absorption: classical vs. quantum contribution

Global conservation law

Momenta are asymptotic
\[p_1^\mu + p_2^\mu = q^\mu + nk^\mu, \quad n = n_{cl} + n_q \]

Classically, you can change the momenta \([p_i^\mu \rightarrow p_i^\mu(\phi)]\),
but you cannot change the on-shell condition \([p_i^2(\phi) = m^2]\)

Important consequences, in particular \(n(\phi) > 0\)

Stationary phase \(\phi_s\): minimal possible quantum absorption \(n_q = n(\phi_s)\)

Classical absorption
\[n_{cl}k^\mu = p_1^\mu + p_2^\mu - [p_1^\mu(\phi_s) + p_2^\mu(\phi_s)] \]

Classical acceleration after creation
Scaling law: \(n_{cl} \sim \xi^3 / \chi\)

Quantum absorption
\[n_qk^\mu = p_1^\mu(\phi_s) + p_2^\mu(\phi_s) - q^\mu \]

Absorption during creation
Scaling law: \(n_q \sim \xi / \chi\)

Recollisions of laser-generated electron-positron pairs

Strong-field QED

Recollision processes of electron-positron pairs

Atomic physics

Recollision processes in atoms after tunnel ionization

Macroscopic quantum loops

Large distance between the vertices

Polarization operator spectrum

Plateau, cutoff: \(n_{\text{cut}} = 3.17 \xi^3 / \chi \)

Semiclassical three-step picture:

1. Pair creation 2. Acceleration by the laser 3. Recollision

Thank you for your attention and your questions!