Ultra-Intense Beams at FACET-II and Experiments to Probe High Field Quantum Electrodynamics far beyond Schwinger Fields

Vitaly Yakimenko
September 5, 2017

ExHILP 2017
A Roadmap for Future Colliders Based on Advanced Accelerators
Contains Key Elements for Experiments and Motivates FACET-II

Key Elements for PWFA over next decade:

- Beam quality – build on 9 GeV high-efficiency FACET results with focus on emittance
- Positrons – use FACET-II positron beam identify optimum regime for positron PWFA
- Injection – ultra-high brightness sources, staging studies with external injectors
- Develop PWFA demonstration facility
FACET-II: Premier R&D facility for PWFA

FACET Highlights (2012-2016 experimental program):
High impact results on efficient acceleration of e- and e+ in plasma:
✓ Mono-energetic e- acceleration
✓ High efficiency e- acceleration (Nature 515, Nov. 2014)
✓ First high-gradient e+ PWFA (Nature 524, Aug. 2015)
• Demonstrate required emittance, energy spread (in preparation for Nature)

FACET-II Timeline:
✓ Nov. 2013, FACET-II proposal, Comparative review
✓ CD-0 Aug., 2015
✓ CD-1 Review Oct., 2015
• CD-4 2022

Four researchers became professors:

FACET-II will operate as a National User Facility with experimental program between 2019 and 2026
PWFA Research Priorities at FACET-II

Emittance Preservation with Efficient Acceleration

FY19-21
- High-gradient high-efficiency (instantaneous) acceleration has been demonstrated @ FACET
- Full pump depletion and preservation of emittance at µm level is planned as the first high impact experiment

High Brightness Beam Generation & Characterization

FY20-22
- 10’s nm emittance preservation is necessary for collider applications
- Ultra-high brightness plasma injectors may lead to first applications of PWFA technology

Positron Acceleration

FY21-24
- Only positron capability in the world for PWFA research will be enabled by Phase II
- Develop techniques for positron acceleration in PWFA stages

Staging Studies

FY22-25
- Independent witness injector planned to be added to FACET-II as an AIP project
- Enables studies of staging challenges (timing, alignment,…) and high transformer ratio

FACET-II Layout and Beams

Beam Parameter

<table>
<thead>
<tr>
<th>Beam Parameter</th>
<th>Baseline Design</th>
<th>Operational Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Energy</td>
<td>10 GeV</td>
<td>4.0-13.5 GeV</td>
</tr>
<tr>
<td>Charge per pulse</td>
<td>2 nC</td>
<td>0.7-5 nC</td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>30 Hz</td>
<td>1-30 Hz</td>
</tr>
<tr>
<td>Norm. Emittance $\gamma\varepsilon_{x,y}$ at S19</td>
<td>4.4, 3.2 μm-rad</td>
<td>3-6 μm-rad</td>
</tr>
<tr>
<td>Spot Size at IP $\sigma_{x,y}$</td>
<td>18, 12 μm</td>
<td>5-20 μm</td>
</tr>
<tr>
<td>Min. Bunch Length σ_z (rms)</td>
<td>1.8 μm</td>
<td>0.7-20 μm</td>
</tr>
<tr>
<td>Max. Peak current I_{pk}</td>
<td>72 kA</td>
<td>10-200 kA</td>
</tr>
</tbody>
</table>
FACET-II Beam will Access New Regimes

Low-emittance (state of the art photoinjector) and ultra-short (improved compression) beam will generate:

- >175 kA peak current (~1 µm long)
- ~100 nm focus by plasma ion column
- $\sim 10^{12}$ V/cm radial electric field ($E_s=1.3\times10^{16}$ V/cm)
- $\sim 10^{23}$ cm$^{-3}$ beam density
- $\sim 10^{25}$ W/cm2 peak intensity
Four Options to Study High Field QED at SLAC

Option 1: FACET-II beam and existing laser
FY19-21
- 20TW synchronized with beam laser is available in FACET-II experimental area
- Can start with start of FACET-II - all hardware exist

\[\chi \approx 0.3 \quad (\chi = \frac{E_p}{E_s}) \]

Option 2: Upgraded Laser and 10GeV beam
FY19-21
- Experimental Laser at FACET-II can be upgraded to 100-300TW
- Alternative location with LCLS beam

\[\chi \approx 1-3 \]

Option 3: 10GeV FACET-II beam and 300MeV “witness injector”
FY22-25
- 175kA FACET-II beam focused to 100nm
- e-beam probe in e-beam field

\[\chi \approx 0.1 \]

Option 4: 100GeV collider e-e+ with \(\chi \approx 103 \) !
Future facility \(\approx 20 \) year
- Full breakdown of perturbation theory
- So far theoretical calculations are impossible

\[\chi > 10^3, \; \alpha \chi^{2/3} > 1 \]

V.I. Ritus, ZhETF, Vol. 57, No. 6, p. 2176, 1970
Option 4:

100GeV collider e⁻e⁺ (Future facility ~10-20 years)

Beam field:
- \(\gamma = 2 \times 10^5 \), \(I_b = 10^6 A \), \(\sigma_r = 10 \text{nm} \), \(\sigma_z = 100 \text{nm} \)

\[E_r = \frac{I_b/c}{2\pi \varepsilon_0 \sigma_r} \approx 6 \cdot 10^{13} V/cm \]

\[\chi = 2\gamma \frac{E_r}{E_s} \approx 1800 \]

\[g = \alpha \chi^{2/3} \approx 1 \]

\[D = \frac{2r_e N_e \sigma_z}{\gamma \sigma_r^2} \approx 15 \]

\[\Upsilon = \frac{5}{6 \alpha (\sigma_x + \sigma_y) \sigma_z} \approx 10^3 \]

\[\delta = \frac{6 \alpha \sigma_z}{5\sqrt{\pi} \gamma \lambda_c} \approx 3 \]

Average energy loss in quantum regime (\(\Upsilon > 100 \))

\[n_b = \frac{N_e}{(2\pi)^{2/3} \sigma_r^2 \sigma_z \gamma} \approx 10^{31} \text{cm}^{-3} \]

\[\frac{2}{\lambda_c^3} \approx 3 \cdot 10^{31} \text{cm}^{-3} \]

Perturbation theory does not work

HEP in the presence of extreme field is unexplored

Beam disruption parameter

Beamstrahlung parameter

V.I. Ritus, ZhETF, Vol. 57, No. 6, p. 2176, 1970

V. Yakimenko, ExHILP, September 5, 2017
FACET-II Science Workshop 2017

17-20 October 2017

[Email: hogan@slac.stanford.edu](mailto:hogan@slac.stanford.edu)

Agenda

<table>
<thead>
<tr>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Time</td>
<td>Session Topic</td>
<td>Presentation</td>
</tr>
<tr>
<td>09:00 am</td>
<td>Simulation Codes</td>
<td>QUICKPIC</td>
</tr>
<tr>
<td>09:30 am</td>
<td>Simulation Codes</td>
<td>OSIRIS</td>
</tr>
<tr>
<td>10:00 am</td>
<td>Simulation Codes</td>
<td>WarpX & Exascale</td>
</tr>
<tr>
<td>10:30 am</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>11:00 am</td>
<td>Simulation Codes</td>
<td>VSIM</td>
</tr>
<tr>
<td>11:30 am</td>
<td>Simulation Codes</td>
<td>8 Years of Beam-Driven Wakefield Simulation - lessons learned, reduced models, and future plans</td>
</tr>
<tr>
<td>12:00 pm</td>
<td>New Directions @ FACET-II</td>
<td>Active plasma lenses - limitations on beam energy/density and aberrations</td>
</tr>
<tr>
<td>12:30 pm</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>01:00 pm</td>
<td>New Directions @ FACET-II</td>
<td>High Field QED enabled by 100TW + 15GeV</td>
</tr>
<tr>
<td>02:00 pm</td>
<td>New Directions @ FACET-II</td>
<td>High Fields: compressed 10GeV+300MeV—> 100GeV/100GeV</td>
</tr>
<tr>
<td>02:30 pm</td>
<td>New Directions @ FACET-II</td>
<td>High Fields: computational challenges</td>
</tr>
<tr>
<td>03:00 pm</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>03:15 pm</td>
<td>New Directions @ FACET-II</td>
<td>Laser upgrade options: >100TW, transport and quality improvement</td>
</tr>
<tr>
<td>03:45 pm</td>
<td>New Directions @ FACET-II</td>
<td>Laboratory Astrophysics studies with electron-positron beams at FACET-II</td>
</tr>
<tr>
<td>04:15 pm</td>
<td>New Directions @ FACET-II</td>
<td>Material studies with compressed electron & positron beams at FACET-II</td>
</tr>
<tr>
<td>04:45 pm</td>
<td>New Directions @ FACET-II</td>
<td>Atomic Physics with fast switching fields</td>
</tr>
<tr>
<td>05:15 pm</td>
<td>New Directions @ FACET-II</td>
<td>Discussions</td>
</tr>
<tr>
<td>05:45 pm</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>
Phase-contrast images of probe profile...

20 GeV e-bunch

Composite 800nm pulse

Lithium plasma oven 1.5m

Probe angle about 0.01rad

Object plane

CCD

Probe imaging

Self-focusing, with not much deposited energy

Hot Plasma

Beam direction
Evolution of e-beam Ionized and Heated Plasma

Plasma channel evolution at FACET with 100ps step

Energy deposition in plasma column is a concern for colliders at very high rep rates
Concepts for Novel Beam Diagnostics at FACET-II

Interference of Dipole Edge Radiation – Monitor for Beam Divergence
- Fringe visibility depends on beam divergence and emittance
- Tested with ~1μm emittance and 60 MeV at BNL ATF

Betatron Radiation for Measuring Ultra-low Emittance
- Central betatron wavelength proportional to beam energy
- Linewidth of the radiation proportional to beam emittance

Quadrant EOS to Measure r-t Beam Correlations
- Goal is to measure correlation along ~1ps long bunch
- Spectrally encoded EOS with imaging spectrometer enable non-destructive measurement of correlations

Bunch Length Monitor for 3-30fs Long Bunches
- Laser light resonantly pumps gas to excited state
- Relaxation to intermediate state triggered by beam field
- Emission rate from intermediate to ground state depends on temporal spectrum of the beam field

Unprecedented beams at FACET-II provide exciting diagnostic challenges
Conclusion

FACET-II will deliver unprecedented high density electron beams for advanced accelerator R&D and broader community
 • Beam delivery is expected to start at the end of FY2019

FACET-II will operate as a National User Facility
 • FACET-II Science Workshop Oct. 17-20, 2017

Extreme fields generated with electron bunches offer alternative to lasers and can eventually enable studies of $\alpha \chi^{2/3} \approx 1$ regime